Lie Symmetry Analysis and Exact Solutions of the Sharma-Tasso-Olever Equation
نویسنده
چکیده
In present paper, the Sharma-Tasso-Olever (STO) equation is considered by the Lie symmetry analysis. All of the geometric vector fields to the STO equation are obtained, then the symmetry reductions and exact solutions of the STO equation are investigated. Our results witness that symmetry analysis was very efficient and powerful technique in finding the solutions of the proposed equation.
منابع مشابه
Approximate Solutions of Time-fractional Sharma-tasso-olever Equations via Homotopy Analysis Methods
In this paper, the homotopy analysis transform method is used to solve the time-fractional SharmaTasso-Olever (STO) equation. This method yields an approximate analytical solution of a rapidly convergent power series with easily computable terms and produces a good approximate solution on enlarged intervals for solving the time-fractional STO equation.
متن کاملExact Solutions for Fractional Partial Differential Equations by Projective Riccati Equation Method
In this paper, the projective Riccati equation method is applied to find exact solutions for fractional partial differential equations in the sense of modified RiemannLiouville derivative. Based on a nonlinear fractional complex transformation, a certain fractional partial differential equation can be turned into another ordinary differential equation of integer order. For illustrating the vali...
متن کاملExact Solutions of the Generalized Kuramoto-Sivashinsky Equation
In this paper we obtain exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems. The methods used to determine the exact solutions of the underlying equation are the Lie group analysis and the simplest equation method. The solutions obtained are then plotted.
متن کاملExact solutions for Fokker-Plank equation of geometric Brownian motion with Lie point symmetries
In this paper Lie symmetry analysis is applied to find new solution for Fokker Plank equation of geometric Brownian motion. This analysis classifies the solution format of the Fokker Plank equation.
متن کاملLie symmetry analysis for Kawahara-KdV equations
We introduce a new solution for Kawahara-KdV equations. The Lie group analysis is used to carry out the integration of this equations. The similarity reductions and exact solutions are obtained based on the optimal system method.
متن کامل